Delta method and convergence of random variables

Delta method

The Delta method can be used to approximate the variance of a function of a random variable that converges to a normal random variable. Assuming \(\sqrt{n} (Y_n - \theta) \rightarrow \mathcal{N}(0,\sigma^2)\) (distribution) with $\theta \in \mathbb{R}$, then for a given function $g$ (with $g’(\theta) \neq 0$), we have \[ \sqrt{n} (g(Y_n) - g(\theta)) \rightarrow \mathcal{N}(0, \sigma^2 [g’(\theta)]^2) \text{ (distribution)} \]

Convergence in distribution and convergence in probability

In the proof of the Delta method, we use the result that \[ \sqrt{n} (Y_n - \theta) \rightarrow \mathcal{N}(0,\sigma^2) \text{ (distribution)} \Rightarrow Y_n \rightarrow \theta \text{ (probability),} \] i.e., for any $\varepsilon > 0$, $\mathbb{P}[|Y_n-\theta| \geq \varepsilon] \rightarrow 0$ as $n$ grows. Now, let us introduce $X_n = \sqrt{n}(Y_n - \theta)$. Then \[ Y_n - \theta = \frac{1}{\sqrt{n}} X_n \] $X_n$ converges to $\mathcal{N}(0,\sigma^2)$ in distribution and $1/\sqrt{n}$ converges to zero. Slutsky’s theorem tells us that \[ X_n \rightarrow X \text{ (distr) and } Y_n \rightarrow a \in \mathbb{R} \text{ (prob)} \Rightarrow X_n Y_n \rightarrow aX \text{ (distr)} \] Therefore $Y_n - \theta \rightarrow 0$ (distr).

Moreover, \[ X_n \rightarrow a \in \mathbb{R} \text{ (distr)} \Rightarrow X_n \rightarrow a \text{ (prob)} \] Indeed, $\mathbb{P}[|X_n-a| \geq \varepsilon] = 1-F_n(a+\varepsilon) + F_n(a-\varepsilon)$. Convergence to a constant in distribution means $F_n(x)$ converges to the Heaviside function $H(x-a)$. Therefore $F_n(a+\varepsilon) \rightarrow 1$ and $F_n(a-\varepsilon) \rightarrow 0$.

Going back to our original proof, we have $Y_n - \theta \rightarrow 0$ (prob), or equivalently $Y_n \rightarrow \theta$ (prob).

[ statistics  ]